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Abstract
A previous tight-binding model of power dissipation in a nanoscale conductor
under an applied bias is extended to take account of the local atomic topology
and the local electronic structure. The method is used to calculate the power
dissipated at every atom in model nanoconductor geometries: a nanoscale
constriction, a one-dimensional atomic chain between two electrodes with a
resonant double barrier, and an irregular nanowire with sharp corners. The local
power is compared with the local current density and the local density of states.
A simple relation is found between the local power and the current density in
quasiballistic geometries. A large enhancement in the power at special atoms is
found in cases of resonant and anti-resonant transmission. Such systems may
be expected to be particularly unstable against current-induced modifications.

1. Introduction

In recent years it has become possible experimentally to produce a wide variety of conducting
nanoscale junctions. Examples of such systems are metallic nanowires and molecular junctions
between macroscopic electrodes. The local electrical current densities in such nanojunctions
can exceed by many orders of magnitude those in ordinary macroscopic metals. As a conse-
quence of this, electrical current flow can affect significantly the structure and mechanical prop-
erties of a nanojunction. Progress has been made in the modelling of current-induced forces in
these systems [1–9]. It has been shown that current-induced changes to interatomic bond forces
can result in a dramatic reduction in the strength and stability of atomic wires [5]. However,
a full understanding of current-induced mechanical effects is not possible without knowledge
of the effective local temperature in a nanoscale conductor in the presence of current flow [5].

The origin of current-induced local heating in nanoscale conductors is fundamentally
the same as in ordinary macroscopic metals. The current-carrying electrons are effectively
in an excited state and are able to dissipate heat by losing energy to phonons via non-
adiabatic, inelastic electron–phonon collisions. The difference between heating in atomic-scale
conductors and heating in ordinary bulk conductors is threefold. First, the characteristic energy
scales involved are different. Atomic-scale conductors often operate in the limit |eW | � kθ ,
|eW | � h̄ω, where W is the applied voltage across the electrodes, θ is the ambient temperature,
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and ω is a typical atomic vibration angular frequency. This is the limit that we consider in
this paper. This regime may be contrasted with classical diffusive bulk conduction, where the
potential drop per electron mean free path is typically much smaller in magnitude than kθ/e.

Second, a nanoscale junction is an inhomogeneous system, in which every atom may have
a unique environment. All atoms must be treated explicitly, and on an equal footing, in the
modelling of electrical conduction in such systems. Building on past work on current-induced
heating of isolated defects [10–12], it has been argued that all atoms in a nanojunction have
oscillator degrees of freedom and can exchange energy with the current-carrying electrons [13].
Power dissipation at all atoms must be included in a calculation of local heating [13].

Third, the linear dimensions of a nanojunction are typically much smaller than the inelastic
electron mean free path. In other words, the time spent by an electron in the nanojunction is
much smaller than the average time between inelastic electron–phonon collisions. Under these
conditions, on average each electron that crosses the junction dissipates only a small fraction
of its energy in the junction itself. Hence, most of the total power in the circuit is dissipated in
the macroscopic electrodes adjoining the junction [13,14]. However, we may put the question
differently and ask not where most of the total power goes, but in what part of the system the
highest power dissipation per atom is to be found. This will be in the region where the current
density is highest, namely in the nanojunction itself. Notionally, this large power per atom in
the nanojunction may be thought of as a product of two factors: the fraction of their energies
that electrons dissipate on average while crossing the nanojunction, which is small, and the
number density of current-carrying electrons in the nanojunction, as quantified by the local
current density, which can be huge.

A simple tight-binding model of electron–phonon coupling suggests that at current
densities attainable in metallic nanojunctions, the power per atom in the nanojunction can be
sufficiently high to lead to a significant local temperature rise [5, 13]. Experimental evidence
for such heating comes from measurements [15–17] of the voltage dependence of

(a) two-level conductance fluctuations and
(b) hystereses at conductance steps in atomic-scale metallic contacts.

Another phenomenon that has been associated with local heating is atom transfer in the scanning
tunnelling microscope [18, 19].

The calculations in [13] were based on crude approximations, in which every atom was
treated as if it were embedded in a bulk environment. In this paper, we present a tight-binding
formalism to calculate the power dissipated at each atom in a general nanojunction geometry,
while taking explicit account of the local atomic configurations and the corresponding local
electronic structure. We have used this formalism to study the relationship between power
dissipation and the local electronic structure and current density in model two-dimensional
systems. In the limit where |eW | � kθ , |eW | � h̄ω, in quasiballistic geometries, we
have found, to a good approximation, that the local power is proportional to the local current
density. This simple relationship disappears with increasing scattering. In the cases of resonant
and anti-resonant transmission, we have found a great enhancement in the power at special
atoms. This suggests that such nanostructures would be particularly prone to current-induced
modifications.

2. Method

The general setup that we consider is shown in figure 1. Our system consists of two semi-infinite
macroscopic electrodes, connected by a nanoscale junction of arbitrary structure [3,9,20–22].
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Figure 1. The general setup considered in the paper. The details are discussed in the text.

A voltage W is applied across the electrodes. We calculate the power dissipated into each
atom in the junction by perturbation theory, following the framework of [13].

To define the unperturbed state of the electron subsystem, we imagine that the ions are
frozen at their equilibrium positions. The electronic structure of the system is described by a
single-orbital orthogonal tight-binding model [3, 7, 9, 20–24] with Hamiltonian

He =
∑
m,n

|m〉Hmn〈n| (1)

where |n〉 is a spherically symmetric positional basis state at atomic site n. The
electron eigenstates for the electrode–junction–electrode system can be divided into two
classes [3, 9, 20, 22]. The states in one class, {|ψ1〉} with energies {E1}, consist of a right-
travelling wave, incident in the left electrode upon the junction, then partially reflected back
into the left electrode and partially transmitted into the right electrode, and conversely for the
other class, {|ψ2〉} with energies {E2}. The battery populates the states {|ψ1〉} and {|ψ2〉} with
Fermi–Dirac occupation functions f1(E) and f2(E) = f1(E + eW), with electrochemical
potentials µ1 and µ2 = µ1 − eW , respectively. Positive eW corresponds to electron flow
from left to right. The temperature entering f1 and f2 is the ambient temperature θ . The
on-site energies {Hnn}, and the states {|ψ1〉} and {|ψ2〉}, may, in general, be calculated in a
self-consistent manner, making them implicit functions of the bias W [3, 9]. The intersite
Hamiltonian matrix elements Hmn = Hnm are functions of the interatomic distance and are
parameters of the model [3,7,9,23]. The electronic structure of the current-carrying electrode–
junction–electrode system in the absence of electron–phonon interactions is thus described by
the density operator

ρ(W) =
∫

f1(E)D1(E) dE +
∫

f2(E)D2(E) dE (2)

where D1(E) = ∑
1 |ψ1〉δ(E − E1)〈ψ1| and D2(E) = ∑

2 |ψ2〉δ(E − E2)〈ψ2| are the partial
density of states operators associated with the two classes of electron states. Rather than
calculating the states {|ψ1〉} and {|ψ2〉} explicitly, one may use scattering theory [20] to express
D1(E) and D2(E), and the total density of states operator D(E) = D1(E) + D2(E), directly
in terms of the Green function for the electrode–junction–electrode system as follows [9, 22]

2π iD1(E) = P1G
−(E) − G+(E)P1 + G+(E)(P2HeP1 − P1HeP2)G

−(E) (3)

2π iD2(E) = P2G
−(E) − G+(E)P2 + G+(E)(P1HeP2 − P2HeP1)G

−(E) (4)

2π iD(E) = D1(E) + D2(E) = G−(E) − G+(E). (5)
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Here P1 = ∑
1 |1〉〈1| and P2 = ∑

2 |2〉〈2|, where indices 1 and 2 run over all atoms to the
left and to the right, respectively, of an arbitrary open surface through the electrode-junction-
electrode system [9, 22]. P1 and P2 satisfy P1 + P2 = 1, where 1 is the identity operator
within the Hilbert space spanned by the orthogonal positional basis {|n〉}. G±(E) are given
by G±(E) = G(E ± iε), where ε is an infinitesimally small real positive number and G(z)

satisfies (z − He)G(z) = G(z)(z − He) = 1. G±(E) are calculated by a standard numerical
procedure, described, for instance, in [21, 22].

To define the unperturbed state of the ionic subsystem, we view the ions as a set of
independent harmonic oscillators, described by the Hamiltonian

Hz =
∑
n,ν

(p2
nν/2Mn + Mnω

2
nνu

2
nν/2) (6)

where pn = (pnx, pny, pnz) is the momentum of ion n, un = (unx, uny, unz) is the displace-
ment of the ion from its equilibrium position, and Mn and ωnν , with ν = x, y, z, are the mass
and the angular frequencies of vibration in each direction, respectively, for the ion. Each ion
is placed in a vibrational state, characterized by the quantity

Nnν = 〈a†
nνanν〉 (7)

where the angular brackets designate thermal averaging and anν = (pnν − iMnωnνunν)/√
2Mnh̄ωnν is a bosonic annihilation operator, with [amµ, a†

nν] = δmnδµν .
To describe electron–phonon interactions, we view the electrons as independent particles

and introduce the electron–oscillator coupling term

Vez =
∑
n,ν

Vnνunν (8)

where

Vnν =
∑
m �=n

(|n〉〈m| + |m〉〈n|) ∂Hnm/∂Rnν. (9)

Here Rn = (Rnx, Rny, Rnz) is the position of the ion and the derivative in equation (9) is
evaluated with the ions at their equilibrium positions.

We now treat Vez as a perturbation, and use standard lowest-order perturbation theory to
calculate the rate of energy transfer, wn, into ion n in the junction, once the electron–oscillator
coupling is turned on [13]. This gives

wn = (2πh̄/Mn)
∑
α,β,ν

(Nnν + 1)fα(1 − fβ)|〈ψβ |Vnν |ψα〉|2δ(Eβ − Eα + h̄ωnν)

− (2πh̄/Mn)
∑
α,β,ν

Nnνfα(1 − fβ)|〈ψβ |Vnν |ψα〉|2δ(Eβ − Eα − h̄ωnν) (10)

Here |ψα〉 and |ψβ〉 each run over all states {|ψ1〉} and {|ψ2〉}, introduced earlier, and
fα,β = f1(Eα,β) if |ψα,β〉 is one of the right-travelling states {|ψ1〉}, and fα,β = f2(Eα,β)

if |ψα,β〉 is one of the left-travelling states {|ψ2〉}. Equation (10) includes a factor of 2 for spin
degeneracy. The first term of equation (10) represents processes in which energy is transferred
to the ion from the electrons, while the second represents the reverse.

Equation (10) may be obtained directly from the Fermi golden rule. To see this, first
we substitute unν = i(anν − a†

nν)
√

h̄/2Mnωnν in equation (8). We may then recognize
(Nnν + 1)(h̄/2Mnωnν)|

〈
ψβ |Vnν | ψα

〉|2 as the modulus squared of the matrix element for a
process, in which an electron is scattered from state |ψα〉 into state |ψβ〉 and degree of freedom
ν of oscillator n gains a quantum of energy, h̄ωnν . Similarly, Nnν(h̄/2Mnωnν)|

〈
ψβ |Vnν | ψα

〉|2
is the modulus squared of the matrix element for a process, in which an electron is scattered
from state |ψα〉 into state |ψβ〉 and degree of freedom ν of oscillator n loses a quantum of



Power dissipation in nanoscale conductors 5381

energy, h̄ωnν . Multiplying the transition rate for each process by the respective amount of
energy transferred to the ion yields equation (10). The prefactor fα(1 − fβ) accounts for the
statistics of the electrons. This prefactor arises naturally if the calculation is carried out in
second quantization [13].

The above, lowest-order, perturbative calculation is valid in the limit, assumed in this paper,
where the mean time spent by an electron in the nanojunction is smaller than the electron–
phonon scattering time in the nanojunction. Equation (10) then describes power dissipation
at atomic sites in the nanojunction. To describe power dissipation in the bulk of the adjoining
electrodes, one must resort to an appropriate theory of diffusive bulk conduction [14].

Invoking the partial density of states operators D1(E) and D2(E), introduced in
equation (2), equation (10) may be cast as

wn = (2πh̄/Mn)
∑

i,j=1,2

∫
dE

∑
ν

(Nnν + 1)fi(E)[1 − fj (E − h̄ωnν)]

× Tr[VnνDi(E)VnνDj (E − h̄ωnν)]

− (2πh̄/Mn)
∑

i,j=1,2

∫
dE

∑
ν

Nnνfi(E)[1 − fj (E + h̄ωnν)]

× Tr[VnνDi(E)VnνDj (E + h̄ωnν)] (11)

where the trace is taken in the positional basis {|n〉}. This result for the local power wn explicitly
takes account of the local electronic structure, as determined by the atomic configuration,
via the quantities Vnν and Di(E), with i = 1, 2. In general, equation (11) must be solved
simultaneously and self-consistently with an appropriate model of heat conduction away from
the junction, in order to yield the steady-state temperature profile in the junction, in the presence
of current flow [13]. In the present paper, however, we wish to study, in a transparent way, the
relation between local electronic power dissipation and the local electronic structure. To this
end, we simplify equation (11) as follows.

We assume that the electron Green functions, and hence D1(E) and D2(E), do not vary
significantly over the energy window for conduction, lying between µ2 and µ1 = µ2 + eW ,
and we impose the limits |eW | � kθ and |eW | � h̄ωnν . Then equation (11) gives a net power
into ion n of

wn = −(2πh̄/Mn)
∑

ν

Enν(T
nν

11 + 2T nν
12 + T nν

22 ) + (2πh̄/Mn)
∑

ν

(|eW | − h̄ωnν)T
nν

12 (12)

where Enν = Nnνh̄ωnν and T nν
ij = Tr[VnνDiVnνDj ], with D1 and D2 evaluated at the Fermi

level in the absence of the bias.
We make the following further simplification. In the absence of heat conduction, the

steady-state condition wn = 0 enables one to solve equation (12) directly for the effective
oscillator temperature of ion n [13]. This sets the thermal energy Enν in the centre of the
nanojunction equal to something of the order of |eW | [13]. In reality, thermal conduction
away from the junction maintains Enν at a fraction of this value. Then the second term in
equation (12) dominates the first. Neglecting h̄ωnν in comparison with |eW | in that second
term, we may then approximately take

wn = (2πh̄/Mn)|eW |
∑

ν

T nν
12 (13)

as the net power source at each site in the junction, which heat conduction has to counterbalance
in the steady state.
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Figure 2. A nanoscale metallic constriction. The details are explained in the text.

3. Results

In all examples in the present paper the electrodes and the junction have a two-dimensional
simple square lattice structure. The hopping integrals are taken as Hmn = Hnm = −γ , γ > 0,
if m and n are nearest neighbours, and zero otherwise. γ and its derivative with respect to
interatomic distance, γ ′, which enters the local power via equation (9), are parameters of the
model. For simplicity, we set Mn = M , ∀n, where M is a typical atomic mass. The power
delivered to site n is calculated from equation (13). The formalism also yields the bond current
from site m into site n, to lowest order in W , through the expression [9, 22]

Imn = 4(e2/h̄)WHnm Im[(D1)mn] (14)

where (D1)mn = 〈m|D1|n〉, with D1 evaluated at the Fermi level in the absence of the bias.
Finally, the local density of states at site n, at zero bias, is given by Dnn = (D1)nn + (D2)nn.

3.1. Nanoscale constriction

We consider the geometry in figure 2. The white circles are metal atoms, with an on-site
energy set equal to zero. The two grey circles are impurity atoms with an on-site energy of
+4γ . The electrodes outside the region shown are 20-atom-wide perfect metallic leads, which,
in this case, mimic closely enough infinitely wide macroscopic electrodes. The Fermi energy is
chosen as +1γ , close to the centre of the conduction band for a two-dimensional simple square
lattice, which extends from −4γ to +4γ . The zero-voltage elastic conductance [9, 20–22] of
the system is σ = 2.8×2e2/h. At this Fermi energy there are three open conduction channels
in the narrowest, four-atom-wide part of the constriction. The geometry in figure 2, therefore,
represents a typical quasiballistic nanoscale metallic constriction, with some surface roughness
and with some weak internal disorder.

Figure 3 shows the local power, wn, calculated from equation (13), and the local current at
each atomic site in the constriction, calculated from equation (14). For purposes of presentation,
the current arrow plotted at each site is the vector sum of bond currents through that site, divided
by two, to reflect the fact that each bond current is shared by two sites. The plot shows that, to
a good approximation, in this quasiballistic system the local power is proportional to the local
current density. The standard deviation of the ratio of the two, over all sites in figure 2, is about
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Figure 3. The local power (circles) and the local current (arrows) at each atomic site in the
nanoconstriction from figure 2. The local power is proportional to the radius of the circle. The
largest circle on the plot represents a power of 0.13×(2πh̄/M)|eW |(γ ′/γ )2, where M is the atomic
mass, W is the applied voltage, and γ and γ ′ are the nearest-neighbour hopping integral and its
derivative with respect to interatomic distance, respectively. The local current is proportional to
the length of the arrow. The largest arrow on the plot represents a current of 0.86 × 2e2W/h.

1/4 of the mean value of this ratio. This approximate proportionality between local power
and local current was one of the working assumptions in [13]. The constant of proportionality
will depend on the material and on the dimensionality of the structure. However, even without
knowledge of the precise value of this constant, the spatial relationship between local power
and local current in quasiballistic nanostructures—in the regime of validity of equation (13),
specified earlier—allows one to make straightforward guesses about the spatial distribution of
the dissipated power in such geometries [13].

We have found that this simple relationship rapidly disappears with increasing disorder.
For example, in compositionally disordered nanowires with a length exceeding the elastic
electron mean free path by a factor of two to three, the proportionality between the local power
and the local current is almost completely gone. Instead, large spatial fluctuations develop in
the ratio of these two local quantities.

The sum of wn over all atomic sites in figure 2 comes to wjunction = 7.3 ×
(2πh̄/M)|eW |(γ ′/γ )2. Let us compare this with the classical result for the total power,
dissipated in the circuit as a whole, wtotal = σW 2. As stated earlier, the validity of equation (13)
requires |eW | > h̄ω, where ω ∼ 2π × 5 × 1012 Hz is a typical atomic vibration angular
frequency. Taking |eW | = h̄ω, M ∼ 10−25 kg and |γ /γ ′| ∼ 10−10 m thus gives an upper
bound—within the range of validity of the calculation—on wjunction/wtotal of order 1/10. There
is, therefore, no contradiction between the basic notion in our model that the highest power
dissipation per atom occurs in the nanojunction, and the expectation that most of the global
power is dissipated in the rest of the system [14].

Let us test one more aspect of our model against the numerical results. Let us consider the
mean electron lifetime, τe, between inelastic electron–phonon collisions in the junction. Both
processes, represented by the two terms in equation (10), limit this lifetime. Without detailed
calculation [13], appealing to the Fermi golden rule, as an order-of-magnitude estimate of τe
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Figure 4. Conductance as a function of Fermi energy for an atomic chain between two metallic
electrodes. The geometry is shown in the inset. The solid curve gives the conductance for the case
where all atoms are the same. The broken curve gives the conductance for the case where the two
end atoms in the chain are weak scatterers, creating a double barrier for electrons. The details are
discussed in the text.

in the vicinity of site n, we may take

1/τe ∼ (γ /Mf )(γ ′/γ )2(γDnn)(2N + 1) (15)

where f ∼ 5 × 1012 Hz is a typical atomic vibration frequency and N is a typical number of
vibrational quanta per degree of freedom, per atom. The local density of states, Dnn, in the
present structure is around 0.16 γ −1. (2N + 1) does not exceed something of order 10 over the
temperature range from 0 K up to a typical metal melting temperature. Then, with γ ∼ 2 eV,
we find a lower bound on τe of the order of 10−14 s. This corresponds to an inelastic electron
mean free path of at least 10 nm, or tens of atoms, exceeding the length of the nanojunction.
Therefore, we have not violated the range of validity of the perturbative calculation of the local
power in the junction.

An estimate of the actual steady-state temperature in a biased metallic nanojunction, based
on the assumption of diffusive lattice heat conduction limited by phonon–electron scattering,
is given in [13]. The resultant local temperature rise leads to a situation where the nanojunction
is hot, as far as atoms are concerned, but is still ballistic, as far as electrons are concerned,
inasmuch as—as shown above—any electron experiences, on average, little inelastic scattering
while crossing the junction [13]. The local heating in this regime, therefore, need not be
accompanied by a significant change in the conductance of the system.

3.2. Atomic chain

The next example is a seven-atom-long atomic chain between two 11-atom-wide semi-infinite
perfect leads, as shown in the inset in figure 4. We consider two cases. In the first case, all
atoms have the same on-site energy, set equal to zero. In the second case, the on-site energy
on the two end atoms in the chain, shown by the grey circles in the inset in figure 4, is set equal
to +2γ . These atoms may then be taken to represent impurities, or another relatively weak
scatterer, creating a double barrier for electrons incident from the electrodes.

The zero-voltage elastic conductance, as a function of Fermi energy, for these two cases
is shown in figure 4. In the case without the barrier atoms, the conductance stays close to
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Figure 5. The local power (upper semicircles), the local current (arrows), and the local density
of states (lower semicircles) at the energies marked A, B, and C in figure 4, for the case without
the double barrier. Power is in units of (2πh̄/M)|eW |(γ ′/γ )2, where M is atomic mass, W is the
applied voltage, and γ and γ ′ are the nearest-neighbour hopping integral and its derivative with
respect to interatomic distance, respectively. The density of states is in units of γ −1. Current is
in units of 2e2W/h. The local power and density of states are proportional to the radius of the
respective semicircle, and the current is proportional to the length of the arrow.

the quantum unit of 2e2/h over the entire conduction band for a one-dimensional chain. The
waviness in the conductance curve is due to multiple reflections from the two chain–electrode
contacts [24]. In the case with the double barrier, this waviness evolves into sharp conductance
peaks, separated by deep troughs. The peaks correspond to resonant transmission through
quasibound states in the region between the barriers [22].

We now calculate the local power, local current, and local density of states at the energies
marked A, B, and C in figure 4. The results for the case without the barrier, shown in figure 5,
are similar to those for the nanoconstriction from figure 2. The results for the case with the
double barrier, shown in figure 6, exhibit qualitatively different behaviour. At the conductance
resonances A and C, we see a huge enhancement in the local power at particular atoms in the
chain. For example, at energy A the conductance, and the maximum local current, is essentially
the same in the cases without and with the double barrier, while the maximum local power
within the chain increases by an order of magnitude in going from the first to the second case.

The origin of this enhancement is evident from the corresponding enhancement in the local
density of states at resonance. Physically, at resonance, passing electrons become temporarily
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Figure 6. The same as figure 5, but for the case with the double barrier in the atomic-chain geometry
of figure 4.

trapped in the quasibound state that gives rise to the resonance. They ‘buzz around’ in the
region inside the double barrier for an enhanced period of time, giving them an enhanced
opportunity to interact with, and dissipate energy at, the vibrating ions in that region. The
precise spatial distribution of the local power and density of states at resonance is related to
the spatial wavefunction of the corresponding quasibound state [22].

To test the validity of our model, we may use equation (15) to obtain a lower bound on the
inelastic electron lifetime at resonance of the order of 10−15 s. This lower bound is of the same
order of magnitude as the electron residence time in the respective quasibound state, which may
be estimated from the energy width of the resonances in figure 4. The electron residence time
thus does not exceed the inelastic electron lifetime, as is required for the validity of our model.

Equation (13) was derived in the linear regime, where electronic properties do not vary
significantly over the energy window for conduction. In the present case this requires |eW | to
be less than something of the order of the width of a conductance resonance, or 0.2γ ∼ 0.4 eV.
At larger voltages, we must revert to equation (11) and perform the energy integrations therein
fully.

With W = 0.1 V, or a few h̄ω, with the earlier representative values for the other quantities
in equation (13), at resonance the maximum power per atom in the chain is of the order of one
h̄ω per thermal vibration period. The resultant steady-state temperature in the chain depends on
the mechanism of thermal conduction away from the junction [13]. Even if heat is carried away



Power dissipation in nanoscale conductors 5387

-4 -2 0 2 4
Fermi energy (γ)

0

0.5

1

1.5

2

co
nd

uc
ta

nc
e 

(2
e2 /h

)

A

B

C

Figure 7. Conductance as a function of Fermi energy for a nanowire with an S-shaped bend
between two metallic electrodes. The geometry is shown in the inset.

by ballistic one-dimensional phonons, without any scattering, at zero ambient temperature, to
balance this power injection in the system at resonance, the thermal energy density in the chain
must be of the order of h̄ω per atom. This corresponds to an effective local temperature of
100–200 K.

3.3. Irregular nanowire

The geometry for the last example is shown in the inset in figure 7. It is a defect-free nanowire
with an S-shaped bend, attached to wide perfect electrodes. Figure 7 shows the conductance for
this system as a function of Fermi energy. The maximum value of the conductance, 2×2e2/h,
is limited by the width—two atoms—of the narrow entrance and exit branches of the nanowire.
The conductance curve exhibits sharp minima. To see their origin, we have calculated the local
power, local current, and local density of states at the energies marked A, B, and C in figure 7.
The results are displayed in figure 8.

Point B shows similar behaviour to the quasiballistic constriction from figure 2. At points
A and C we see a great enhancement in the local power, accompanied by an enhancement in
the local density of states, at atoms in the top left and bottom right corners of the central island
in the nanowire. The actual local current in those sheltered regions is very small compared
with the mainstream regions. Close inspection of the results for point A shows that current
flow in the sheltered corners is vortical.

Physically, the behaviour seen at energies A and C is analogous to what we found for
the atomic chain with the double barrier. The enhancement in the local density of states and
in the local power is due to the formation of quasibound states—at special energies—in the
sheltered corners of the central island. Electrons at those energies spend enhanced periods
of time in these corners, resulting in enhanced energy exchange with the oscillators therein.
The only qualitative difference from the case of the double barrier is that at resonance in the
double barrier the respective quasibound state acts as a stepping stone for incident electrons
and results in a conductance peak, whereas in the present case, the formation of quasibound
electron ‘traps’ at the corners results in a reduction in overall transmission.
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Figure 8. The local power (upper semicircles), the local current (arrows), and the local density of
states (lower semicircles) at the energies marked A, B, and C in figure 7. The units are the same as
in figure 5.

4. Summary

The particular electronic model used in this paper was deliberately chosen in a simple way
in order to enable us to extract the following qualitative conclusions. First, it is possible
to have large local power dissipation in a nanoscale junction, even when the time spent by
individual electrons in the junction is much less than the inelastic electron lifetime. There
is no contradiction between this statement and the expectation that most of the total power,
dissipated in the circuit as a whole, should be deposited in the electrodes.

Second, in simple quasiballistic geometries—in the voltage range where equation (13)
is valid—the power per atom locally is proportional to the local current density. This spatial
relation between the two quantities allows simple guesses of the spatial distribution of the
dissipated power in such geometries.

Third, there can be greatly enhanced power dissipation at special atoms in cases of
resonant and anti-resonant transmission. This enhancement occurs, because at resonance
or anti-resonance electrons get temporarily trapped in quasibound states, allowing extra time
for electron–phonon interactions locally. An example of an anti-resonant system is the bent
nanowire in figure 7. Examples of resonant systems are the double-barrier formation in
figure 4 and molecular junctions between two metallic electrodes [8,25]. The enhanced power
dissipation in such systems increases their susceptibility to current-induced modifications.

The actual steady-state temperature profile in a biased nanojunction depends on the
mechanism of thermal conduction away from the junction. The estimate given above in
connection with the resonant double barrier, as well as the earlier estimates in [5,13], indicate
a significant local temperature rise in metallic nanojunctions even at modest voltages. To obtain
a more accurate picture of the steady-state temperature profile in a nanoconductor, ultimately
one must solve equation (11) simultaneously with an appropriate atomistic model of thermal
conduction away from the junction. This work is currently in progress.
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